Recommended: Mugging
One of my favorite—and incredibly goofy—examples of how the ways we model our environment help us make sense of the world around us comes from Amazon.
One of my favorite—and incredibly goofy—examples of how the ways we model our environment help us make sense of the world around us comes from Amazon.
A friend of mine who is very bright makes his living as a data scientist that specializes in fantasy sports. Recently, he said, “I’m steeped in data and modeling. And I looked at the studies and some of the models on SARS-CoV-2 and hydroxychloroquine [HCQ] and found some of them persuasive,” to the point that he wanted to acquire HCQ and ignore advice to wear a mask.
Chances are you’ve never heard of Simpson’s paradox, but it matters.
It seems obvious that there are advantages to standing out from the crowd—to differentiate your product or service from the others in your space. But successful differentiation doesn’t mean that people will choose your product. In fact, asking and acting on the issue of differentiation has at least two important problems when seen through the lens of Jobs to be Done (JTBD).
Apple’s recent release of the M1 series Macs, based on the newly minted Apple Silicon technology, was a hot topic in November. This led us to take a new look at Apple’s past, present, and future through the lens of Disruption, published here in three parts.
In our discussion of Apple and Disruption, I mention that beyond low-end and new-market Disruptions, there is a third way that firms can disrupt: by means of a different business model type.
Quibi is not doing as well as expected. They have fallen well short of their subscriber target. And the app peaked briefly in the top ten downloads, but has quickly fallen out of the top 100.
Today, I’m posting something I wrote earlier this week. This is an adaptation of work that my long-time collaborator and friend, Clayton Christensen, and I did together. (It was his birthday Monday–4/6–so this topic drifted to the top of my mind.) To be clear, this is not the original, but an adaptation of our joint work.
There is another important consequence of the power of anomaly: all good theories must be susceptible to anomalies, otherwise there is no progress. Correlation is like a sliding scale of confidence–it’s akin to an analog signal that we receive with varying degrees of fidelity. Consequently, we can seldom state definitively if some event is an anomaly or merely “noise.” On the other hand, a causal model is more like a digital signal—it gives us discrete “yes” or “no” indicators for anomalies. As we mention in the first chapter, the causal approach to manufacturing created clear go/no-go signals that either kept work moving or initiated an investigation into a defect. Without the clear binary signals, sub-par work would inevitably sneak through.
The current widespread focus on the problems of replication in scientific studies—especially those of the social and biomedical sciences—has been to invest in ever more sophisticated analytical tools and techniques: more data, more sophisticated tools of analysis, faster computing, etc. All of these efforts have missed an alternative solution: causality. Most research in biomedical and social science begins with data analysis. But data analysis alone is not capable of yielding a genuine causal model. Essentially, all analysis is subject to the problem of induction—roughly, correlation is not causation.
A few days ago I wrote a post on how easy it is to have “false negatives”—negative for virus, but the person is sick. I made a table to show how easy it is to overestimate the efficacy of a test.
Welcome back to nerd corner. Today a note about Healthcare Capacity.